### Question

In a 2D matrix of dimensions M*N, find number of “equilibrium” points. A point (i, j) is said to be an “equilibrium” point only if all following conditions hold:

a) sum of rows 1…(i-1) = sum of rows (i+1)…M

b) sum of columns 1…(j-1) = sum of columns (j+1)…N

### Solution

This is a generalize question of **Equilibrium index**.

Refer to **Equilibrium index**, read this. **The idea** is to get total sum of array first. Then Iterate through the array calculate left sum == sum / 2.

Equilibrium index of an array is an index such that the sum of elements at lower indexes is equal to the sum of elements at higher indexes. For example, in an arrya A:

A[0] = -7, A[1] = 1, A[2] = 5, A[3] = 2, A[4] = -4, A[5] = 3, A[6]=0

3 is an equilibrium index, because: A[0] + A[1] + A[2] = A[4] + A[5] + A[6]

6 is also an equilibrium index, because sum of zero elements is zero, i.e., A[0] + A[1] + A[2] + A[3] + A[4] + A[5]=0

Well, for Equilibrium Points in 2D Array, should be similar. DIY and leave me a comment!

### Code

**code for findning EI in 1-D array**

```
public List<Integer> findEI(int[] array) {
List<Integer> ans = new ArrayList<Integer>();
int sum = 0;
for (int i = 0; i < array.length; i++) {
sum += array[i];
}
int runningSum = 0;
for (int i = 0; i < array.length; i++) {
if (2 * runningSum + array[i] == sum) {
ans.add(i);
}
runningSum += array[i];
}
return ans;
}
```